1. Finding a basis for the intersection of ranges.

a) Suppose you are given two matrices, $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{n \times q}$. Explain how you can find a matrix $C \in \mathbb{R}^{n \times r}$, with independent columns, for which

$$\text{range}(C) = \text{range}(A) \cap \text{range}(B).$$

This means that the columns of C are a basis for $\text{range}(A) \cap \text{range}(B)$.

b) Carry out the method described in part (a) for the particular matrices A and B defined in intersect_range_data.m. Be sure to give us your matrix C, as well as the matlab (or other) code that generated it. Verify that $\text{range}(C) \subseteq \text{range}(A)$ and $\text{range}(C) \subseteq \text{range}(B)$, by showing that each column of C is in the range of A, and also in the range of B.

Please carefully separate your answers to part (a) (the general case) and part (b) (the specific case).

Solution.

a) We know that

$$\text{range}(A) = \text{null}(A^T)^\perp.$$

This means that any y in $\text{range}(A)$ is perpendicular to all vectors in the $\text{null}(A^T)$; and any vector which is perpendicular to all vectors in $\text{null}(A^T)$, must be in $\text{range}(A)$. We will show that

$$\text{range}(A) \cap \text{range}(B) = \left(\text{null}(A^T) + \text{null}(B^T)\right)^\perp.$$

Let y be a vector in $\text{range}(A) \cap \text{range}(B)$. Then $y = Ax_a$, for some x_a and $y = Bx_b$, for some x_b. Let v be any vector in $\text{null}(A^T) + \text{null}(B^T)$. Then $v = v_a + v_b$ for some $v_a \in \text{null}(B^T), v_b \in \text{null}(B^T)$. Then we have,

$$y^Tv = y^Tv_a + y^Tv_b = x_a^TA^Tv_a + x_b^TB^Tv_b = x_a^T(A^Tv_a) + x_b^T(B^Tv_b) = 0.$$

Thus $y \perp (\text{null}(A^T) + \text{null}(B^T))$. Since any vector in $(\text{range}(A) \cap \text{range}(B))$ is perpendicular to every vector in $(\text{null}(A^T) + \text{null}(B^T))$,

$$\text{range}(A) \cap \text{range}(B) \subseteq \left(\text{null}(A^T) + \text{null}(B^T)\right)^\perp.$$
Let y be a vector in $(\text{null}(A^T) + \text{null}(B^T))^\perp$. Then y is perpendicular to all vectors in $\text{null}(A^T)$ which means $y \in \text{range}(A)$. Similarly y is perpendicular to all vectors in $\text{null}(B^T)$ which means $y \in \text{range}(B)$. Thus $y \in (\text{range}(A) \cap \text{range}(B))$ and we have,

\[
\text{range}(A) \cap \text{range}(B) = \left(\text{null}(A^T) + \text{null}(B^T)\right)^\perp.
\]

The full QR factorization of a matrix A is,

\[
A = [Q_1 A \ Q_2 A] \begin{bmatrix} R_{1A} & 0 \\ 0 & 0 \end{bmatrix},
\]

and $\text{null}(A^T) = \text{range}(Q_{2A})$. Similarly, let full QR factorization if a matrix B be

\[
B = [Q_1 B \ Q_2 B] \begin{bmatrix} R_{1B} & 0 \\ 0 & 0 \end{bmatrix},
\]

and hence $\text{null}(B^T) = \text{range}(Q_{2B})$. Then,

\[
\text{null}(A^T) + \text{null}(B^T) = \text{range}(Q_{2A}) + \text{range}(Q_{2B}) = \text{range}(D),
\]

where $D = [Q_{2A} \ Q_{2B}]$. Now,

\[
\text{range}(A) \cap \text{range}(B) = \left(\text{null}(A^T) + \text{null}(B^T)\right)^\perp = \text{range}(D)^\perp = \text{null}(D^T).
\]

So we find the QR factorization of D. Let the QR factorization be

\[
D = [Q_1 D \ Q_2 D] \begin{bmatrix} R_{1D} & 0 \\ 0 & 0 \end{bmatrix},
\]

and then $C = Q_{2D}$ as $\text{null}(D^T) = \text{range}(Q_{2D}) = \text{range}(C)$. Thus we have the matrix C such that $\text{range}(C) = \text{range}(A) \cap \text{range}(B)$.

b) The following matlab code gives the required matrix C and the dimension of $\text{range}(C)$.

```matlab
% clear commands
% intersect_range_data; % load data
Q_2A = null(A');
Q_2B = null(B');
D = [Q_2A Q_2B];
C = null(D');
rC = rank(C)
>>
C =
-0.3365  -0.2349   0.3581
 0.2927  -0.4471  -0.0277
-0.6691   0.0460  -0.1406
0.1963   0.3655  -0.2581
 0.3599  -0.1406  -0.1416
```

2
\[-0.0929 \quad 0.1880 \quad -0.5108 \\
0.1967 \quad 0.4497 \quad 0.3712 \\
0.2019 \quad -0.5007 \quad 0.0800 \\
0.2901 \quad 0.2292 \quad 0.2283 \\
-0.1140 \quad -0.2208 \quad 0.5718 \]

\[rC = 3\]

Show \(\text{range}(C) \subseteq\text{range}(A)\) and \(\text{range}(C) \subseteq\text{range}(B)\).

\[rA = \text{rank}(A)\]
\[rAC = \text{rank}(\begin{bmatrix} A & C \end{bmatrix})\]
\[rB = \text{rank}(B)\]
\[rBC = \text{rank}(\begin{bmatrix} B & C \end{bmatrix})\]

\[>>\]
\[rA = 6\]
\[rAC = 6\]
\[rB = 5\]
\[rBC = 5\]